229,748 research outputs found

    Direct torque control of brushless DC drives with reduced torque ripple

    Get PDF
    The application of direct torque control (DTC) to brushless ac drives has been investigated extensively. This paper describes its application to brushless dc drives, and highlights the essential differences in its implementation, as regards torque estimation and the representation of the inverter voltage space vectors. Simulated and experimental results are presented, and it is shown that, compared with conventional current control, DTC results in reduced torque ripple and a faster dynamic response

    Advances on creep–fatigue damage assessment in notched components

    Get PDF
    In this paper, the extended Direct Steady Cyclic Analysis method (eDSCA) within the Linear Matching Method Framework (LMMF) is combined with the Stress Modified Ductility Exhaustion method and the modified Cavity Growth Factor (CGF) for the first time. This new procedure is used to systematically investigate the effect of several load parameters including load level, load type and creep dwell duration on the creep–fatigue crack initiation process in a notched specimen. The results obtained are verified through a direct comparison with experimental results available in the literature demonstrating great accuracy in predicting the crack initiation life and the driving mechanisms. Furthermore, this extensive numerical study highlighted the possible detrimental effect of the creep–ratchetting mechanism on the crack growth process. This work has a significant impact on structural integrity assessments of complex industrial components and for the better understanding of creep–fatigue lab scale tests

    An efficient method for computing unsteady transonic aerodynamics of swept wings with control surfaces

    Get PDF
    A transonic equivalent strip (TES) method was further developed for unsteady flow computations of arbitrary wing planforms. The TES method consists of two consecutive correction steps to a given nonlinear code such as LTRAN2; namely, the chordwise mean flow correction and the spanwise phase correction. The computation procedure requires direct pressure input from other computed or measured data. Otherwise, it does not require airfoil shape or grid generation for given planforms. To validate the computed results, four swept wings of various aspect ratios, including those with control surfaces, are selected as computational examples. Overall trends in unsteady pressures are established with those obtained by XTRAN3S codes, Isogai's full potential code and measured data by NLR and RAE. In comparison with these methods, the TES has achieved considerable saving in computer time and reasonable accuracy which suggests immediate industrial applications

    Zero Modes of Matter Fields on Scalar Flat Thick Branes

    Full text link
    Zero modes of various matters with spin 0, 1 and 1/2 on a class of scalar flat thick branes are discussed in this paper. We show that scalar field with spin 0 is localized on all thick branes without additional condition, while spin 1 vector field is not localized. In addition, for spin 1/2 fermionic field, the zero mode is localized on the branes under certain conditions.Comment: 11 pages,no figure

    Kernel Regression For Determining Photometric Redshifts From Sloan Broadband Photometry

    Full text link
    We present a new approach, kernel regression, to determine photometric redshifts for 399,929 galaxies in the Fifth Data Release of the Sloan Digital Sky Survey (SDSS). In our case, kernel regression is a weighted average of spectral redshifts of the neighbors for a query point, where higher weights are associated with points that are closer to the query point. One important design decision when using kernel regression is the choice of the bandwidth. We apply 10-fold cross-validation to choose the optimal bandwidth, which is obtained as the cross-validation error approaches the minimum. The experiments show that the optimal bandwidth is different for diverse input patterns, the least rms error of photometric redshift estimation arrives at 0.019 using color+eClass as the inputs, the less rms error amounts to 0.020 using ugriz+eClass as the inputs. Here eClass is a galaxy spectra type. Then the little rms scatter is 0.021 with color+r as the inputs.Comment: 6 pages,2 figures, accepted for publication in MNRA

    Directional excitation of graphene surface plasmons

    Full text link
    We propose a scheme to directionally couple light into graphene plasmons by placing a graphene sheet on a magneto-optical substrate. When a magnetic field is applied parallel to the surface, the graphene plasmon dispersion relation becomes asymmetric in the forward and backward directions. It is possible to achieve unidirectional excitation of graphene plasmons with normally incident illumination by applying a grating to the substrate. The directionality can be actively controlled by electrically gating the graphene, or by varying the magnetic bias. This scheme may have applications in graphene-based opto-electronics and sensing
    • …
    corecore